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INTRODUCTION 

TRANSPORT processes through porous media play important 
roles in diverse applications such as transpiration cooling 
and design of solid-matrix heat exchangers. In recent years 
non-Darcy effects in porous media have received great atten- 
tion. For instance, laminar steady fluid flow and heat transfer 
in a porous medium channel bounded by two impermeable 
parallel plates was studied by Kaviany [I]. With negligible 
inertia effects, it was observed that heat transfer is enhanced 
for porous media with large shape parameters. Recently, 
Khodadadi and Kroll [2] have reported analytic expressions 
for the fully-developed flow field with simultaneous suction 
and injection on both walls of the porous medium channel. 
In extending these contributions, a theoretical study of the 
fluid flow and heat transfer through a porous medium chan- 
nel bounded by permeable parallel walls with equal suction 
or equal injection (Fig. I) is presented. 

TRANSPORT EQUATIONS AND THEIR 
SOLUTION 

Following Kaviany [I], the momentum and energy trans- 
port equations are 

pr((li) -V(C)) = -v(P>+p,v*(u) 

-+-*f((ti).(u))Ip (I) 

3 

(C)*V(T) = Q’(T) (2) 
where (6) and .!? are the volume-averaged fluid velocity 
vector and the pore velocity unit vector, respectively. In what 
follows, the symbol for the volume-averaging operation has 
been abandoned and the inertia term in the momentum equa- 
tion is ignored. Following White [3], far downstream of the 
entrance the stream function (‘I’) can be defined as: 

Yk .v) = Hu,wf(Y*) = (ml(O) - va/-(Y*) (3) 

where u,(O) and u,(x) are the mean axial velocities at x = 0 
and x’, respectively. The positive and negative values of per- 
meation velocity at the walls (V) correspond to equal suction 
and equal injection, respectively. In equation (3), y* = 
y/H and /is a non-dimensional function to be determined. 
The two velocity components are u = u,(s)/‘(.r*) and 
r = V’(y*). When these relations are inserted into equa- 
tion (I), and the pressure terms are eliminated by cross- 
differentiation, the following fourth-order nonlinear 
ordinary differential equation is obtained 

/““+B(JI/“-ff”‘)- fy = 0 
4 (4) 

where B = VH/v, is the blowing Reynolds number and 
y = 2H/(K/s)” ’ is the porous medium shape parameter. For 
the case of non-porous media (7 = 0). the numerical solution 
of equation (4) and discussion of the pertinent results are 
presented by White [3]. The appropriate boundary condi- 
tions are the symmetry condition at the mid-plane and the 
no-slip condition plus the specified velocity values at the 
wall, i.e.f(O) = O,f”(O) = O,/(I) = I andf’(1) = 0. 

Under the condition of thermally fully-developed flow 
with constant heat flux rate per unit channel length, constant 
heat transfer coefficient, and ignoring the axial conduction 
term in the energy equation, a second-order ordinary 
differential equation is obtained 

0”-Pe/Q’+(Nu-Pe)f’ = 0 (5) 

where fI = (Tw- T)/(T,- T,,,) ; T,,, and T, are the mean and 
wall temperatures, respectively. Pe is the Peclet number 
(Pe = B Pr) and Nu is the Nusselt number (Nu = Hh/k,). 
The appropriate boundary conditions are: B’(0) = 0 and 
O(I) = 0. In addition, one can show that : Nu = -@‘(I). 

‘PBRMBABLBBOUNDARY ” 

FIG. I. Schematic diagram of the porous medium channel bounded by two permeable parallel walls. 
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FIG. 2. Variation of the u and u velocity profiles with B for: (a) y  = 4 and (b) y  = 20. 

Therefore, the Nusselt number in equation (5) is not an 
arbitrary parameter. In fact, the Nusselt number has to be 
guessed in order to solve equation (5). such that the solved 
temperature profile satisfies the condition 0’(l) = -Nu. 
Equations (4) and (5) combined with the corresponding 
boundary conditions were solved by using the Runge-Kutta 
method. 

RESULTS AND DISCUSSION 

A. Flow field 
Profiles of both components of the velocity vector are 

presented in Figs. 2(a, b), for y  = 4 and 20. The limiting case 
of B = 0 corresponds to the situation of non-permeable walls 
for which the analytic expression has been reported [I]. 

For a fixed y. as the blowing Reynolds number increases, the 
presence of a flat portion for the axial velocity component 
near the symmetry plane becomes more pronounced and the 
thickness of the momentum boundary layer near the wall 
decreases. For a given B, this behavior becomes more marked 
as the shape parameter is increased. The velocity component 
in the y-direction monotonically decreases (V + 0) as one 
moves from the wall to the mid-plane. For high values of the 
blowing Reynolds number or the shape parameter, these 
velocity profiles tend toward linear variations. 

The axial velocity always reaches a maximum at the mid- 
plane. The non-dimensional frictional drag coefficient can 
be shown to be: 9 Re = 4)/“( I)[. where Re = u,(x)H/v,. 
The variations of the maximum velocity and the frictional 
drag coefficient are illustrated in Fig. 3. For a given y. as 

y = (2H) / (KIE)O.~ 
FIG. 3. Dependence of the maximum axial velocity and the frictional drag coefficient on the porous medium 

shape parameter and the blowing Reynolds number. 
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FIG. 4. Variation of the temperature profiles (Pr = 0.1.0.5 and 1) with B for: (a) y  = 20 and (b) y  = 100. 

the blowing Reynolds number is increased, the maximum 
velocity decreases due to the flattening of the velocity profiles. 
For very large values of y. the maximum velocity approaches 
unity regardless of the blowing Reynolds number. With no 
permeation at the wails, f  Re approaches 12, whereas for 
very large shape parameters, it approaches 27. Finally, for a 
given y. as the permeation is strengthened, frictional drag 
increases as a result of steep shearing. 

B. Temperawe field 
The temperature profiles are presented in Figs. 4(a, b), for 

y  = 20 and 100. Three different Prandtl numbers (Pr = 0.1, 
0.5 and I) were studied in each figure. For the case of B = 0, 
an analytic expression exists, of the form : 

A’&-, = 
-[2(l-e-Y)-y-ye-Y]Z 

4[-~(1-e-~)+(1+e-y)‘(-$+2)+2e~y]’ 

(7) 

For non-porous media, relation (7) becomes Nu = 
35/17 z 2.0588, whereas with y  + co, Nu + 3, indicating 
heat transfer enhancement of about 50%. For a given y. per- 
meation at the walls brings about more enhanced heat trans- 
fer. For low Pe, the Nusselt number exhibits a dependency 
on the shape parameter, whereby as y  is increased, heat 
transfer is augmented. On the other hand, for high Pe, the 
Nusselt number is independent of the shape parameter. For 

r 
[2(,-e-‘)-y-ye-Y] ,o.SY(.~~--l)+,-o.~/l~~+~l_(1+,-7) ~(y*L,)+, 

Ol,,, = 1 ( I 
c -5(1-e-‘i)+(*+e-~)‘(-~+2y)+2yeO] 

(6) 

L 

In the case of non-porous media, relation (6) becomes 
tJ = (35/136)(y*‘- I)(JJ*~-5), whereas with y  + co, it 
becomes a parabola : 0 = 1.5( 1 -y**). For a given y  and Pr, 
as the blowing Reynolds number increases, the temperature 
profile near the symmetry plane becomes flatter and the 
temperature gradient at the wall increases markedly, analo- 
gous to the axial velocity profiles. As expected, for a given 
flow condition (fixed y  and B), the above-mentioned features 
of the temperature profile become more pronounced for the 
high-Pr fluids. Finally, for a given y, one can note that the 
temperature profile is only a function of the Peclet number. 

The dependence of the Nusselt number on the porous 
medium shape parameter and the Peclet number is illustrated 
in Fig. 5. For the case of Pe = 0, an analytic expression exists 

the high Peclet numbers studied, the Nusselt number is 
almost equal to. the Peclet number. 

CONCLUSIONS 

For a given porous medium shape parameter, as the blow- 
ing Reynolds number increases, profiles of the axial velocity 
component and temperature become flatter near the sym- 
metry axis and the respective gradients near the wall increase 
markedly. For a given blowing Reynolds number, this 
behavior becomes more marked as the shape parameter is 
increased. The velocity component in the y-direction mono- 
tonically decreases as one moves away from the wall and 
finally vanishes at the symmetry plane. For a given shape 
parameter, as the permeation at the walls is strengthened, 
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FIG. 5. Dependence of the Nusselt number on the Peclet 
number and the porous medium shape parameter. 

frictional drag increases as a result of steep shearing next to 
the walls. For low Peclet numbers, the enhanced Nusselt 
number exhibits a dependency on the shape parameter. For 
high Peclet numbers, the Nusselt number is independent of 
the shape parameter. 
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